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Abstract - A method is proposed for obtaining a compatibility relationship among the Prandtl, Reynolds, 
Grashof and Eckert numbers, present in the transport differential equations for heat and momentum. This 
method enables one to calculate consistent multipliers for all terms in the aforesaid equations without 
reference to any physical system. The analysis reveals that natural convection and viscous dissipation cannot 

simultaneously affect solutions to transport equations with an equal and high intensity. 

NOMENCLATURE 

c, c,, G c,, some constants ; 

C”> specific heat ; 

EC, Eckert number ; 

9, acceleration due to gravity; 

Gr, Grashof number ; 

k versor opposed to gravity; 

L a characteristic length ; 

Pr, Prandtl number ; 

Re, Reynolds number ; 

t, dimensionless time; 

T, dimensionless temperature; 

v, dimensionless velocity vector ; 

V, a characteristic velocity. 

Greek letters 

B9 thermal expansion coefficient ; 

Y, a dimensionless parameter ; 

6, a dimensionless parameter; 
AT, a characteristic difference of temperature; 

6 a dimensionless parameter ; 

95 a dimensionless parameter ; 

JG thermal diffusivity ; 

;, 

kinematic viscosity; 
dimensionless dissipation function; 

X9 a dimensionless parameter. 

1. INTRODUCTION 

IT IS WELL known that the dimensionless Navier- 
Stokes and energy differential equations for a 

Newtonian, incompressible, non-isothermal fluid, 

whose physical properties are supposed to be inde- 
pendent of temperature, except for the buoyancy term, 
depend on four dimensionless groups : Prandtl, Rey- 
nolds, Grashof and Eckert numbers. Their interac- 
tion, so complex in many cases, makes it difficult to 
predict the influence of each of them on solutions to 
transport differential equations. If a general study of 
this influence is carried out without reference to any 
prefigured physical system, the first problem of com- 
patibility of the four numbers must be faced, since it 

will later be seen that if four random numbers are 
chosen, they may not individualize a meaningful 
physical situation. 

The second problem should be to determine, for 
each dimensionless group, the amplitude and position 
of the range, within which values affecting solutions 
fall, bearing in mind that their mutual interactions 
must also be taken into account. These delimitations 
would make it possible to recognize a priori whether or 
not a certain term (inertia, buoyancy, dissipation, etc.) 
in the transport equations will be important in con- 
ditioning the shape of solutions. 

Arguments in this paper endeavour to supply some 
explanations for the two problems outlined. 

2. BASIC CONSIDERATIONS 

The full dimensionless Navier-Stokes and energy 
differential equations for a Newtonian, incompres- 
sible, non-isothermal fluid can be written in Gibbs 
notation as follows : 

6V 

St- - -(v.V)v+$Tk+&V2v 

(1) 
6T 
6t= -(v.V)T+&V’T+g+ 

Physical properties are assumed to be independent 
of temperature except for the buoyancy term, in which 
the approximation of Boussinesq is used. The four 
numbers 

Pr=Z=y 
lc 

Re=I/L=6 
V (2) 

Gr = sBL3 AT 
T=& 

V 

V2 
&Z---C 

&AT ’ 
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appear in the equations. They are now equated to ;‘, (5, 
E, r~ for the sake of brevity and convenience, as will later 

become clear. 
It is useful to note that all the quantities in (2) can be 

grouped as follows : 
(1) physical properties of the fluid : C’,, /I. K, 18 ; 
(2) geometry and operating conditions of the physi- 

cal system: L, Ii, AT: 
(3) dimensionless parameters : 7, 6, I:, q. 
Fixing quite independently the four numbers ;‘, 6. E, ~7 

can lead to: 

(1) A quatern of incompatible physical properties, 
in that they are not simultaneously attributable to any 

existing fluid, if geometry and operating conditions of 
the system are supposed already fixed. In fact we 

obtain from (2) : 

c,, = Aq .; 

(2) Geometries and/or operating conditions which 

are again incompatible, in that they are not attribut- 

able to any physical system of interest (natural or man- 
made), if the working fluid is given. In fact the 

following is derived from (2) : 

(4) 

(5) 

y does not appear in (3))(5) because only the last three 

equations (2) are necessary and sufficient to get L, I/, 
AT. It is here simply stressed that a problem of 

compatibility exists among the numbers y, ii, E, I?. To 

cast light on their close connection without reference 

to any physical system, the employment of (5) as a link 
of 6, E, n to AT and the properties of a fluid is proposed : 

If a new dimensionless group is defined : 
C,’ AT 

1 = -272, 
9 P ” 

(5’) can be written : 

rl=x -1 3 .a2 ,y2 3. 

This is a compatibility relationship among 6, 
9-x which, as is shown by (6) depends on 

(5’) 

(6) 

(7) 

c and 
some 

physical properties of the uorkinp tluid and on AT 

The range of the latter is generally more restricted than 
that of both f, and V; particularly when physical 

properties are assumed to be approximately constant 
in a non-isothermal field of flow, 47 must coherently 

be kept within a rather narr!,vv rang_. 4~ :1T does not 
actually change so much :i.\ ! and 1. : 5 I can help us tta 

grasp the general connection ;~mon;: ii, ‘ and r/ more 
easily than (3) and 14): for tbrs ri-ason LL was preferred 

for the derivation of a compatibtlit> relationship. 
,J could obviously be exprc>scd 711 terms of the 

already defined numbers: ii’) ~111 IX urittcn 

!iP” 
i X (_.r< / , ~ 

.i 

but this expression would not grve any immediate 

indication as to its dependence on the lluid and AT. So 

definition (6) is more meaningful / is generally a very 

large number for usual values of AT It is computed for 

AT = 1 C in Table 1 and quoted for several fluids 
together with values of their pertinent physical proper- 

ties Of course, 1t depends <)n some thermodynamic 
coordinates, in particular on temperature. 

If i: and ~1 are the coordinates of d Cartesian frame (a 

different couple among ii. ;., !I c~mld be chosen; the 
above choice seemed the most convenient, because 

more help comes from physical mtuition and habit in 
fixing (5). plots of ‘1 = ?/ (~.J.J, each labelled by an 

assigned value of 6, can be tmced ,Iccording to (7). .4s 

an example. this is done in Fig. 1. where three families 
of curves (7). correspondin g 10 three values of A. are 
drawn. 4s logarithmic scales ,ue used for ti and E. 
functions rl= ~1 (6. L). !i -1 C‘, II~(: represented by straight 
lines. It is seen that, vvhate\,cr ? ik *? decreases for an 
increasing i.. rf increases with ;? i being constant. It 

must be noted. however. thar the ratios 1.5, 1 76, t,‘#. 
~‘(5 are actually present as multipliers m the general 

transport equations (1 ). If6. I ri satisfy (7) for a given x, 
a tern of consistent ratios 1 ii. :-A” t~,!fi, whose values 

might be correctly introduced 11: f I ). is immediately 
computed and holds for ali Ruids and thermal states 

characterized by the same i 
1 ‘~6 is calculated by the Prandti number. Ofcourse;’ 

must be compatible with I because ue have from (6) : 

IiAI \’ 

1 -= ( j (;;?,: 
:i i 

As different fluids can have the same 2 (this can also be 
argued from Table 1 in a few cases), different values of) 
are consistent with the same ,: if’ it is for two different 

fluids and the same AT. 

then 
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FIG. 1. A graphic representation of the compatibility relationship (7) for three values of x and the related 
three loci (12) where E/S* = o/S. 

since generally Now that a criterion for compatibility is stated, it is 
useful to point out what the quatems of consistent l/6, 
l/$, s/d2, qfS are and how they change when the 
representative point moves throughout the plane EQ 

It is concluded that y cannot be extracted from x. Thus analytical expressions for these ratios are ob- 

Calculation of l/y6 demands an independent know- tained, valid when the point .q is moved along 

ledge of y. prescribed lines. As y is constant for a given fluid at a 

Table 1. Values of x for several fluids and AT = 1°C 

Fluid T(“C) C,(Jkg-‘“C-‘) B (l/C) v(m* s-r) x 

Glycerine (sol. aq.) -20 
Glycerine (sol. aq.) 0 
Lub. oil 0 
Lub. oil 20 
Air 0 
Air 27 
Air 200 
Water 20 
Water 40 
Argon 0 
Argon 2cm 
Hydrogen -23 
Hydrogen 177 
Helium -18 
Helium 177 
Mercury 0 
Mercury 20 
Mercury 100 

2100 0.28 x lo- 3 
2260 0.28 x 1O-3 
1796 0.39 x 1o-3 
1880 0.39 x 1o-3 
716.4 3.66 x 1O-3 
718 3.33 x 10-a 
737.3 2.11 x 10-a 

4182 0.18 x 1O-3 
4178 0.18 x 1O-3 

313 3.66 x 1O-3 
311 2.11 x 10-a 

9972 4.0x 10-a 
10,283 2.22 x 10-S 
3132 3.92 x 1O-3 
3132 2.22 x 1o-3 

140 0.18 x 1O-3 
138 0.18 x 1O-3 
137 0.18 x 1O-3 

10-r 
8.31 x 1O-3 
4.28 x lo- 3 
0.9 x 1o-3 

13.6 x 1O-6 
15.7 x 1o-6 
35.9 x 1o-6 

1.006 x 1O-6 
0.658 x 1O-6 

11.9 x lo+ 
32.0 x lo+ 
80.6 x 1o-6 

215.0 x 1O-6 
95.50 x 10-G 
269.0 x lO+ 
0.12 x 10-b 

0.115 x 10-e 
0.093 x 10-b 

1.23 x 10” 
2.21 x lOI 
2.16 x 1Org 
5.60 x 10zo 
1.53 x 102’ 
1.40 x 102’ 
7.23 x 10zo 
2.32 x lo”* 
5.40 x 102* 
1.68 x 10ZO 
6.86 x 1Ol9 
9.91 x 102* 
4.95 x lo= 
2.28 x 102’ 
8.95 x lo*’ 
5.71 x 1oz5 
6.37 x 10” 
9.60 x 1025 
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reference temperature, the product yS is proportional 
to 6. 

Along a straight line (Fig. 1) q = C,, noting that (7) 
holds for every point of the q plane, the set 

i 

I=x 
-113 .a2 .c-2;3 

rl = c, 

gives : 

6 = c;‘Z. 116 .Fl:3 
x 

w = G x i 
112. -116 .~ -I .c-lr3 

+52 = c;‘.yli3 .El:3 (‘3) 

Ii/s = C72 .x-li6 .,yli3, 

6 and E/S’ grow with E along straight lines parallel to 

Table 2. l/6, l/r& E/S’, q/6 in terms of q along lines i: 
=C,:~=lO’~;y=6x 10“ 

rl 

108 
106 
lo4 
lo2 

1 
10-Z 
10-4 
10-s 
10-B 

lo8 
lo6 
104 
lo2 
1 

10-z 
10-d 
10-h 
10-s 

lo8 
lo6 
104 
lo2 

1 
10-2 
10-h 
10-e 
10-B 

loa 
106 
lo* 
102 

1 
10-z 
10-d 
10-e 
10-s 

10-7 
10-e 
10-s 
10-d 
10-j 
10-Z 
lo-’ 

1 
10 

1o-8 
10-’ 
1o-6 
10-S 
10-d 
10-j 
1O-2 
10-l 

1 

10-g 
10-E 
10-l 
10-h 
10-5 
10-d 
10-3 
10-Z 
10-l 

10-10 
10-g 
10-S 
10-7 
10-G 
10-S 
10-a 
10-3 
10-Z 

E=CZ=l 

1.66 x 10-12 
1.66 X lo-” ;;I:: 

1.66 x 10-10 lo-lo 
1.66 x 1o-9 1o-8 
1.66 x 1o-s 10-e 
1.66 X lo-’ 1O-4 
1.66 x 10-e 1o-2 
1.66 x 10-S 1 
1.66 x 1o-4 102 

E = c, = 103 

1.66 x 10-13 LO-” 
1.66 x lo- I2 
1.66 x lo-” K’ 9 

1.66 x lo-lo lo-’ 
1.66 x 10-g 10-S 
1.66 x lo- * 1o-3 
1.66x 1o-7 10-l 
1.66 x 1o-6 10 
1.66 x 10-S 103 

I: = c, = 106 

1.66 x lo-‘4 lo-l2 
1.66 x 10-13 lo- ‘O 
1.66 x 1o-‘2 1o-8 
1.66 x lo-” 1o-6 
1.66 x lo-‘0 10-b 
1.66 X 10-g 10-Z 
1.66x 1o-8 1 
1.66 x 1o-7 102 
1.66 x lo-” 104 

c = c, = 109 

1.66 x lo- IS lo-” 
1.66 x lo-l4 1o-9 
1.66 x lo-l3 lo-’ 
1.66 x lo-l2 1o-5 
1.66 x lo-” 1O-3 
1.66 X lo-lo 10-l 
1.66 x 10-g 10 
1.66 x 1o-8 lo3 
1.66 x lo-’ 105 

10 
1 

10-I 
1o-2 
10-s 
W4 
10-’ 
lo--” 
lo-.’ 

1 
lo- ’ 
1o-2 
1o-3 
1O-4 
lo-* 
10-6 
lo-’ 
lo-* 

10-l 
10-l 
10m3 
1O-4 
1o-5 
1O-6 
IO-’ 
1o-8 
1o-9 

1o-2 
1o-3 
1o-4 
1O-5 
1o-6 
10-l 
1o-8 
10-’ 
lo-lo 

the E axis; q/S, on the contrary, decreases. 
Along any straight line E= C2 it 1s. 

(j = c; 3 .%I 0 .,!l 

6 and q/6 increase, ~‘6~ decreases, for a growing q along 

straight lines parallel to the q axis. Table 2 is derived 

from calculation of the four relationships (9) for a wide 
range of q, four values of C,, x = 10”. 7 = 6 x IO4 : these 

two last numbers approximately fit physical properties 

of a lubricating oil at about -- I5 ‘C (Table I ). Results 

show that Fig. 1 can be divided into three horizontal 

strip fields : natural convection largely prevails in the 
lower strip, viscous dissipation in the upper one. Inside 

the intermediate strip, lo- ’ < rr --I IO’, values of r;/&’ 
can be found of the same order as v lb: ; this order is 
10e4, 10-5, whileitk lo-’ < l,,ii r 10--2. Moving the 

representative point from lef? to right within every 

strip, natural convection always tends to become more 

important; the contrary occurs for viscous dissipation. 
Along the descending straight lines of Fig. I WC 

have : 

6 = C‘, 

The last formula in (10) is nothing but (7) divided by 

6. l/y6 is not a function oft:; so. when 6 and 7 are fixed, 

the multiplier of the diffusive term computed from 

them is compatible with the infinitely numerous 
couples E/S’ and q/S. Figure 2 is a logarithmic graph of 

relationships (10) in the particular case of a lubricating 

oil. Right and left columns of stars quote l/6 and I,$? 

respectively. When 6 is fixed, the four multipliers are 
immediately read in Fig. 2 for any i: and can be 

compared. 
Results in Table 2 are related to a specified fluid; 

nevertheless they induce the doubt that it is impossible 

to have contemporaneously a strong viscous dissi- 
pation and a lively natural convection, since when t:/d2 
is large s/S is small ; when the two ratios are of the same 
order, the latter is comparatively small. In order to 
clarify this point further, let us find the locus of the 

plane EV where 

or 

r/ = 1:/o. ill’) 

(11’) represents a family of straight lines, each labelled 
by a value of 6. They are parallel in Fig. I. The 
following equation of the locus is obtained from (7) 
and (11’): 
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FIG. 2. Plots of E/# and q/6 in terms of E along lines (7) for x = lOI and several values of 6. Stars quote 
l/&l/y6 for a lubricating oil at - - 15°C is marked by the column ofasterisks. The locus (12) for the same x is 

also traced. 
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along (12) it is : 

6 = .p9 . $i9 

I/$ = x-“9 .y-1 .E-5/9 (13) 

a/# = q/6 = x-2’9 . E-119. 

Loci for x = lo’*, x = lo”, x = 5.4 x 10’s (water 
at 40°C for example) are drawn in Fig. 1 as straight 
lines with a positive slope. Above every locus u/S > 
E/B’ ; below it the contrary holds. It must also be 
observed that every point on any straight line (11’) 
meets the condition (11) but only the intersection 
point between (7) and (11’) for the same 6 (e.g. the point 
B in Fig. 1) meets (11) for the given 2. 
t] grows with E more slowly than 6 along (12), so q/6, 
as is shown by the third relationship (13), decreases for 
a growing a; the largest values are then found for the 
smaller E, but they are at any rate small because of the 
magnitude of x for existing fluids. Table 3 quotes r]/6 
for E= 1 and various loci (12) whose x values, although 
not strictly computed by the physical properties of well 
identified fluids, are within the range of Table 1. It is 
then confirmed that equal and relatively large values of 
a/S2 and q/6 cannot coexist for any physical system; 

Table 3. q/S for F = 1 and several x’s on the 
loci (12) 

x 6 E/P = q/6 

10’8 102 1o-4 
102’ 2.15 x lo* 2.15 x 1O-5 
1oz4 4.64 x lo2 4.64 x 1O-6 
1029 1.66 x 103 3.59 x lo-’ 

their equality implies smallness, except for 0 < E < 1, 
which is clearly not very interesting. 

As is apparent, all the formulae (7)-(13) depend on x 
in a very heavy way since it is generally very large. 
When it is changed, say from x1 to x, the curves (7) in 
Fig. 1 are shifted in the q direction by a quantity 

logq-logq,=A.rl=log p 
0 

l/3 

If x > xi, Aq -=z 0 and the curves (7) are shifted 
downwards by an increasing x. The curves (12) are 
moved in the same way by an amount 

Arj = log : 
0 

l/9 

. 

The change in x directly acts upon descending 
straight lines q/6 in Fig. 2, whose ordinates are lowered 
when ;I is raised. This is stated by the last relationship 
(lo), the only one in this group which explicitly 
depends on x. An increase of this number has then the 
direct effect of reducing the incidence of the viscous 
dissipation on solutions to (1); in this way x can supply 
an immediate indication: the larger it is, the weaker 
this influence is. 

Equation (6) shows that x depends on several 
physical properties of the fluid, on g and AT. So 
stronger gravitational fields and weaker thermal fields 
yield a reinforcement of viscous dissipation effects. 

A change in x might imply a change in y (see (6’)); an 
indirect effect on the diffusion term would result in this 
case. But the variation trend of l/y6 cannot be known if 
the working fluid is not exactly specified. Equation (7) 
says that any two of the three numbers 6, E, 1 can 
assume any value whatsoever and these are always 
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consistent with any fluid ; according to the viewpoint 
of this work, as the couple 6, E is chosen, we can say that 
the effects of l/(s and ~/a’ on solutions to (1) are not 
conditioned by the nature of the fluid. When l: < 6? 
natural convection should not exert as great an 
influence as viscous force, but both these effects are 
weakened by an increasing 6, as is shown in Fig. 2. The 
greater 6 is, the greater c must be for natural con- 
vection to affect solutions. 

Equation (7) is introduced in (3) and (4) to eliminate 
their dependence on q and use is made of (6); the 
following expressions are derived : 

t=(8.B.A~)-‘:3,v”:3.E1f3 (14) 

T/=(g.p.AT)‘;3.V1/3.fi.C-l!3. 
(19 

L is a function only of E and grows with it for a given 
fluid. Thus L is the same for any couple 6, q which, 
together with E and x, satisfies (7). Actuaiiy (14) is 
nothing but the expression of L extracted from Gr, but 
the way in which it is obtained here is deemed more 
significant. V decreases for an increasing E, but also 
depends on 6. So one line V = V (6, E), 6= C, is 
associated with each q = 9 (6, E) of Fig. 1 for the same 5. 

Withregardtothede~ndenceof(l4and~l5)onthe 
physical properties, L and Y do not depend on C,. 
Besides, j? does not change very much from one fluid to 
another and AT is in some way a fixed quantity. 
Therefore v is the only property which substantially 
accounts for the peculiarity of the fluid in (14), (15). 
These functions are plotted on a loga~thmic chart 

(Fig. 3) for two liquids with very different kinematic 
viscosities: water at 40°C and a lubricating oil at 
+ - 15°C. The combined observation of figures like 2 
and 3 enables one to link dimensions and operating 
conditions of any physica system to the incidence of 
the various effects (viscous force, buoyancy, thermal 
diffusion, viscous dissipation). As an example, some 
natural systems which are often characterized by a 
large Land a small V, should more likely be the seat of 
a lively natural convection rather than strong dissi- 
pative phenomena; a well known result. 

Arguments in this work construct a context which 
outlines how the interaction among the four dimen- 
sionless groups develops; the context can contribute to 
the acquisition of a first, rough orientation in assessing 
the influence of the various terms on solutions to (1). 
So, for example, if x is comparatively large, viscous 
dissi~tion can hardly have an influence. It affects a 
Aow of air at 20°C more intensely than a gow of water 
at the same temperature, all other constraints remain- 
ing unchanged. 

Questions such as ‘when can viscous dissipation not 
be neglected for water? When can thermal diffusion be 
neglected? etc., are more easily answered by the use of 
the formulae in this paper. Let us consider the 
following example. If water at 20°C with AT= 1°C (x 
= 2.32 x 10z8) is considered together with 6 = lo5 
and c = 103, we have from (7) n = 3.5 x IO-“. 
Multipliersare: l/S = lo-‘; l/$5 = 1.43 x lo-“; 1:/6’ 
= iO_‘; a,@ = 3.5 x 10e7. If reference is made to a 

Fw.3. LinmandVinms-’ as functions of F for two fluids and several values of 6. 



rotating disk with a finite radius, the flow is probably 
still laminar for 6 = lo5 (this is strictly the case for 
isothermal conditions). Nothing entitles one to believe 
that in this-case viscous dissipation is a priori negligible 
with respect to other effects, although water is in 
question. 

Another opportunity for exploiting the material of 
this paper is in the study of a physical system whose 
configuration is known, but, for reasons of generality, 
it would be preferable not to prefix its dimensions, 
operating conditions and working fluid. In this case it 
is possible to select the most convenient, strictly 
compatible multipliers for equations (1) before 
integrating. 

A method is offered of localizing the areas of Fig. 1 
where the largest or the smallest values of a given 
coefficient must be sought and what the others are in 
the quatern. In regards to thermal diffusion, for 
example, l/y6 decreases for growing E and q as is shown 
by (8), (9) and by Table 2. The influence of this term is 
reinforced in the lower left region of Fig. 1 and 
weakened in the upper right one. If it is noted that q/6 
increases with n, the points where thermal diffusion may 
be expected to become negligible against viscous 
dissipation are within the upper strip of Fig. 1. Some 
calculations are collected in Table 4 as examples to 
support this statement and to display the consistent 
values of multipliers for several common fluids. The 
calculations of Table 4 and Table 2 also show that s/S2 
is lowered faster than l/6 by an increase in q. Effects 
linked to these coefficients are probably comparable 
for values at the bottom of Fig. 1. In the top region 
viscous forces prevail over natural convection, but 

they become in turn less and less important with 
respect to forces of inertia. 

If now, restrictions on the amplitude of AT are 
released, the same ratios of dimensionless groups, 
although multiplied by functions of dimensionless 
temperature (and possibly pressure), appear in the 
transport equations with the full variability of all 
physical properties. As far as compatibility of the four 
numbers is concerned, it must be observed that the 
presence, as multipliers, of the dimensionless functions 
mentioned above (these functions change from one 
fluid to another, depend on the amplitude of AT and 
on its position in the scale of temperature) prevents 
any general treatment. The characteristic nature of 
the fluid plays a role in every case. Arguments in this 
work still hold with reference to a specified fluid. 

3. CONCLUSIONS 

A proposal is put forward in this paper to state a 
compatibility relationship among Re, Gr, EC without 
reference to any physical system. This implies the 
definition of a new dimensionless group, x, which 
compactly accounts for the peculiarity of the fluid and 
AT; the latter quantity is seen to be in some way 
known or evaluable. As a consequence, the multipliers 
l/Re, GrfRe’, EcfRe for the heat and momentum 
transport equations can be immediately derived. It is 
shown that more than one value of the multiplier 
l/Pr . Re of the thermal diffusion term can be con- 
sistent with a specified tern of the above mentioned 
multipliers. 

A graphic image as to how Re, Gr, EC are linked to 
each other and geometry and operating conditions of a 
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Table 4. The four multipliers for four q’s, two E’S and four fluids at 20°C (from (9)) 

Fluid 

x 

1 ih 

I= I / = IO’ 

Lub. oil 

5.60x IO’” 1.01 x IO’ 

Water 
2.3x 10’8 7 

Air 

1.4x 102’ 0.7 

Mercury 
6.37 x 10” 2.30 x -’ 

Lub. 011 
Water 
Air 
MerCUrV 

Lub. al 
Water 
Air 
Mercury 

Lub. oil 
Water 

AX 

Mercury 

348x 10~8 3.48x lo-” 

1.95x IO 4 1.95x lo-” 

2.9Y x IO ’ 2.99x IO-” 

5.0x10 y 5.0x lo-” 

3.48x 10-b 3.4Xx 10-q 
1.95x IO ’ 1.95x IO-‘” 
2.99 x IO ’ 299x10 ’ 

50x 10-7 5.0x lo-‘0 

3.48x10 * 3.48x IO-’ 
1.95x10-’ 1.95 x 10-8 
2.99 x IO-’ 299x IO-’ 

5.0x loms 5.0x 10-8 

3.48 x IO-’ 3.48x IO-’ 
1.95x lo-” 1.95x 10-e 
2.99x IO-’ 299x 10m5 

5.0x10 J 5.0 * 10-6 

345x lo-” 3.45 x lo-‘5 

2.67 x IO-” 2.67 x IO-” 

4.27 x IO- ’ 4.27x IO-” 

2.17x IO- 2.17x IO-” 

rf= 10’ 

3.45 x 10-10 3.45 x lo-” 
267x lOm8 2.67x IO-” 
427x IO-” 4.27x lo-’ 
2.17x IO-” 2.17.x lo-* 

?=I 

3.45 x 10-a 3.45x 10-l’ 
2.67 x 10m6 2.67x lO-9 
4.27 x IO-’ 4.27 x lo-’ 
2.17x lo-’ 2.17x lO-6 

‘I = lo-’ 

3.45 x 10-e 3.45 x 10-9 
2.67 x lO-4 2.67 x IO-’ 
4.27 x IO-’ 4.27x IO-’ 
2 17x 10-l 2.17x IO-’ 

I.21 x10-1” I.21 x lo-” 

3.5 x 10-18 3.5 x lo-” 

8.94 x lo-‘6 8.94x lo-‘” 

2.5 x 10. ” 2.5 x IO-” 

I.21 x lo-” 1.21 x 10-n 
3.5 x lo-‘+ 3.5x 10-1’ 

8.94x 10-12 8.94x lo-’ 
25x10-” 2.5 x IO-” 

1.21 x 10-1 I.21 x 10-4 
3.5x lo-‘0 3.5 x lo-’ 

8.94 x IO-’ 8.94x 10-5 
2.5 x 1O-9 25x10-” 

I.21 x10-3 I.21 
3.5 x 10-e 3.5 x 10-3 

8.94x IO-’ 8.94x IO-’ 
2.5 x IO-’ 2.5x IO-’ 

3.48 3.48x 10-3 

1.87x 10-l 1.87x 10.’ 

2.99 2.99 x IO-” 

5.0x 10-l 5.0 x 10-4 

3.48 * 10-Z 3.48 x 10-5 
1.87x IO-’ 1.87x 10-6 
299x IO-’ 2.99x IO-” 

5.0x 10-3 5.0x 10-6 

3.48 x 10-b 3.48 x 10m7 
1.87.x 1O-5 1.87x 10-B 
2.99x 10-4 2.99 x 10-T 

5.0x 10-5 5.0x 10-a 

3.48x 10.6 3.48x 10-g 
187x 10-7 1.87 x lo-‘0 
2.99 x 1O-6 2.99 x 10-q 
5.0x 10-7 5.0 x lo-‘0 
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physical system is built up. This clarifies the con- APPENUIX 

nection between dimensions and operating conditions 
of the system and the main effects which develop in it. 

Gebhart and Mollendorf write in [l] and [2] that viscous 
dissipation may be important for very large systems. This 

A result which comes out of the analysis in this work statement is consistent with the background supplied by this 

is that natural convection and viscous dissipation paper. If the fluid is fixed and 1. is kept constant, it sterns from 

cannot simultaneously have an equal and strong 
(6) and (71 that AT can be varied onI1 if I, is varied too. This 

influence upon solutions to transport equations in the 
means to consider a sequence of systems. each of them 
characterized by a couple L, AT and by the same fluid. In such 

considered range of Gr. a sequence, where AT is smaller, 1, is larger, 1 is smaller and, 

Finally some examples are given to explain how the according to (71, viscous dissipation becomes more and more 

material in this work can be conveniently used. important. 

With regard to the second problem, outlined in the 
The same result can be reached with a different approach. il 

Introduction, this paper does not give an exhaustive 
the compatibility relationship is derived from (3), we have. 

reply. However, the trend for each multiplier is in- 
,, -:~ yl”‘; {A i : 

dicated and it is possible at least to know where each where 
of them tends to become unimportant. 
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COMPATIBILITE ENTRE LES GROUPES ADIMENSIONNELS DES 
EQUATIONS AUX DERIVEES PARTIELLES DE NAVIER~ STOKES FI 

DE L’ENERGIE 

RCumLOn propose une mCrhode pour obtenir une relation de compatlbihte entre le nombre de Prandtl, it: 
nombre de Reynolds,celui de Grashofet celui de Eckert qui sont prtsents dans les Cquations diff&entielles dc 
transfert de chaleur et de quantitC de mouvement. On a ainsl la possibilitt de calculer des multiplicateurs 
cohCrents pour tous les termes des susdites Cquations sans se rCf&er j aucun systtme physique. L’analyse a 
dCtectt que la convection naturelle et la dissipation visqueuse ne peuvent pas simulta&ment influencer les 

solutions des equations de transfert avec une Cgale et haute intensite 

VEREINBARKEIT UND WECHSELWIRKUNG ZWISCHEN DEN KENNGR(iBEN 
DER NAVIER-STOKES- UND DER ENERGIE-DIFFERENTIALC;LEICHUN(i 

Zusammenfassung-Es wird eine Methode mitgeteilt, die eine Beziehung iiber die Vereinbarkeit von Werten 
der Prandtl-, Reynolds-, Grashof- und Eckert-Zahlen in den Differentialgleichungen fiir den Warme- und 
Imp&transport liefert. Damit kann man konsistente Multiplikatoren fiir jeden Term der genannten 
Gleichungen ohne Bezug auf ein bestimmtes System berechnen. Es zeigt sich, daB freie Konvektion und 
viskose Dissipation nicht gleichzeitig die Liisung einer Transportgleichung mit gleicher und starker 

Intensitit beeinflussen kb;nnen. 

COBMECTMMOCTb M B3AklMOCBR3b ME)KnY 6E3PA3MEPHbIMM KOMIIJIEKCAMM 
B flB@@EPEHUBAJIbHbIX YPABHEHWRX HABbE -CTOKCA M 3HEPTMM 

AaaoTauwn ~ npenno~ea Melon noJly~eHn8 yC,IOBAii coa~~ec,m4OCTH wceJI npaHAl:lH. PefiHOJIbIG~, 

rpaCrO@a R %KepTa, BXOJIlIU,WX B JW$~e~HUE3aJIbHbIe ypaBHeHAR “‘ZpHOca ,eTJ:la M HMnynbca. 

OH n03BonaeT paccwTbraa=b cornacymmae MHoxwrellEi Lln~ acex wenoB Ha3aanHblx ypaBHeeG 6e3 

anennllwia K Ko~KpeTHoii @i3WIeCKO~ CHCTeMe. Ananu? nOKa3bIaaeT. ‘1~0 eCTeCTBeHHa4 KOHBeKUWH 

li aH3Kas nwcEinawi5I He MM-YT onHoBpeMew0 oKa3bmaTb O~AH~KOB~ 60nbmoe anmwae Ha pemeHRe 

ypawewii nepenoca. 


