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Abstract — A method is proposed for obtaining a compatibility relationship among the Prandtl, Reynolds,
Grashof and Eckert numbers, present in the transport differential equations for heat and momentum. This
method enables one to calculate consistent multipliers for all terms in the aforesaid equations without
reference to any physical system. The analysis reveals that natural convection and viscous dissipation cannot
simultaneously affect solutions to transport equations with an equal and high intensity.

NOMENCLATURE

C,C,,Cy,C5, some constants;

C,, specific heat;

Ec, Eckert number;

g, acceleration due to gravity;
Gr,  Grashof number;

k, versor opposed to gravity;
L, a characteristic length;

Pr,  Prandtl number;

Re, Reynolds number;

dimensionless time;

T, dimensionless temperature;
v, dimensionless velocity vector;
v, a characteristic velocity.

Greek letters

B, thermal expansion coefficient;

7, a dimensionless parameter ;

o, a dimensionless parameter;

AT, a characteristic difference of temperature;
&, a dimensionless parameter ;

f, a dimensionless parameter;

K, thermal diffusivity ;

v, kinematic viscosity ;

¢, dimensionless dissipation function;

% a dimensionless parameter.

1. INTRODUCTION

IT 1s WELL known that the dimensionless Navier—
Stokes and energy differential equations for a
Newtonian, incompressible, non-isothermal fluid,
whose physical properties are supposed to be inde-
pendent of temperature, except for the buoyancy term,
depend on four dimensionless groups: Prandtl, Rey-
nolds, Grashof and Eckert numbers. Their interac-
tion, so complex in many cases, makes it difficult to
predict the influence of each of them on solutions to
transport differential equations. If a general study of
this influence is carried out without reference to any
prefigured physical system, the first problem of com-
patibility of the four numbers must be faced, since it

will later be seen that if four random numbers are
chosen, they may not individualize a meaningful
physical situation.

The second problem should be to determine, for
each dimensionless group, the amplitude and position
of the range, within which values affecting solutions
fall, bearing in mind that their mutual interactions
must also be taken into account. These delimitations
would make it possible to recognize a priori whether or
not a certain term (inertia, buoyancy, dissipation, etc.)
in the transport equations will be important in con-
ditioning the shape of solutions.

Arguments in this paper endeavour to supply some
explanations for the two problems outlined.

2. BASIC CONSIDERATIONS

The full dimensionless Navier-Stokes and energy
differential equations for a Newtonian, incompres-
sible, non-isothermal fluid can be written in Gibbs
notation as follows:

ov Gr 1
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Physical properties are assumed to be independent
of temperature except for the buoyancy term, in which
the approximation of Boussinesq is used. The four
numbers
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appear in the equations. They are now equated to 7, J,
¢, for the sake of brevity and convenience, as will later
become clear.

It is useful to note that all the quantities in (2) can be
grouped as follows:

(1) physical properties of the fluid: C,, f, x, v;

(2) geometry and operating conditions of the physi-

cal system: L, V, AT,

(3) dimensionless parameters: 7, 4, ¢, 4.

Fixing quite independently the four numbers y, 9, ¢,
can lead to:

(1) A quatern of incompatible physical properties,
in that they are not simultaneously attributable to any
existing fluid, if geometry and operating conditions of
the system are supposed already fixed. In fact we
obtain from (2):

Vol
::"AT ’7
1 V2 L
b= a5
g L-AT ¢
1
k=L V- =
y0
1
v=L-V
é

(2) Geometries and/or operating conditions which
are again incompatible, in that they are not attribut-
able to any physical system of interest (natural or man-
made), if the working fluid is given. In fact the
following is derived from (2):

1 C, &
L:;}."ﬂi.g‘ (3)
Bv &3
V=g — — 4
9 C, &n @
Bry2 50
AT = g* /ACR’ . }2’73 (5)

y does not appear in (3)—(5) because only the last three
equations (2) are necessary and sufficient to get L, V.,
AT. It is here simply stressed that a problem of
compatibility exists among the numbers 7, 6, ¢, 1. To
cast light on their close connection without reference
to any physical system, the employment of (5) as a link
of 6, 5,1 to AT and the properties of a fluid is proposed :

3 _ Hzﬁz"% 5:’ (5)
TCIAT &
If a new dimensionless group is defined:
CJAT
1="5m (6)
g2ﬁ2v-
(5') can be written:
n=x"'3-52~z:“23. (7

This is a compatibility relationship among 9, ¢ and
n—y which, as is shown by (6), depends on some
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physical properties of the working fluid and on AT.
The range of the latter is generally more restricted than
that of both I. and V' particularly when physical
properties are assumed to be approximately constant
in a non-isothermal field of flow, AT must coherently
be kept within a rather narrow range. As AT does not
actually change so much as { and V. {5y can help us to
grasp the general connection among a, & and » more
easily than (3) and (4): for this reason it was preferred
for the derivation of a compatibility relationship.

¢ could obviously be expressed in terms of the
already defined numbers: (£ can be written

Ke

TG Eet

but this expression would not give any immediate
indication as to its dependence on the fluid and AT. So
definition (6) is more meaningful. 7 is generally a very
large number for usual values of AT. 1t is computed for
AT = 1°C in Table 1 and quoted for several fluids
together with values of their pertinent physical proper-
ties. Of course, it depends on some thermodynamic
coordinates, in particular on temperature.

If ¢ and 4 are the coordinates of a cartesian frame (a
different couple among d. 7, 4 could be chosen; the
above choice seemed the most convenient, because
more help comes from physical intuition and habit in
fixing o). plots of =4 (4.2} each labelled by an
assigned value of 9, can be traced according to (7). As
an example, this is done in Fig. 1, where three families
of curves {7), corresponding to three values of y, are
drawn. As logarithmic scales are used for 4 and &
functions y=# (d.2). 3= C. are represented by straight
lines. It is seen that, whatever & is, 7 decreases for an
increasing «. # increases with &, ¢ being constant. It
must be noted, however. that the ratios 1/8, 198, £/6°%,
/8 are actually present as multipliers in the general
transport equations (1). If 8. v,y satisfy (7) for a given 7,
a tern of consistent ratios 14, #/87. 1/6. whose values
might be correctly introduced in (1), is immediately
computed and holds for all fluids and thermal states
characterized by the same /.

146 is calculated by the Prandtl number. Of course ¢
must be compatible with 7 because we have from (6):

R .
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As different fluids can have the same y (this can also be
argued from Table 1 in a few cases). different values of
are consistent with the same 7 ; if it is for two different
fluids and the same AT :

CLAT a7
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FiG. 1. A graphic representation of the compatibility relationship (7) for three values of y and the related
three loci (12) where &/6* = 5/é.
since generally Now that a criterion for compatibility is stated, it is
v « useful to point out what the quaterns of consistent 1/9,
2 g2 1y, ¢/6%, n/6 are and how they change when the
Vi Ky

representative point moves throughout the plane en.

It is concluded that y cannot be extracted from y. Thus analytical expressions for these ratios are ob-

Calculation of 1/y8 demands an independent know- tained, valid when the point &n is moved along
ledge of 7. prescribed lines. As 7 is constant for a given fluid at a

Table 1. Values of y for several fluids and AT = 1°C

Fluid TCC) C,0kg™°C™Y)  B(1°C) v(m?s™t) y
Glycerine (sol. ag.) -20 2100 0.28x10~3 10! 1.23x 1047
Glycerine (sol. aq.) 0 2260 0.28x 1073 831x1073 2.21 x 10t°
Lub. oil 0 1796 0.39x1073 428x 1073 2.16x 10*°
Lub. oil 20 1880 0.39x10°3 09x10-3 5.60 x 102°
Air 0 716.4 3.66x1073 13.6x10°¢ 1.53 x 10%*
Air 27 718 333x1073 15.7x10°° 1.40 x 10%*
Air 200 737.3 2.11x10°3 359x10°¢ 7.23 x 10?°
Water 20 4182 0.18x 1073 1.006 x 10~ 2.32x10%®
Water 40 4178 0.18x1073 0.658 x 10~¢ 5.40 x 10?8
Argon 0 313 3.66x10°3 11.9x10-° 1.68 x 102°
Argon 200 3 2.11x1073 320x10°¢ 6.86 x 10*°
Hydrogen ~23 9972 40x10°3 80.6 x10°° 9.91 x 10?2
Hydrogen 177 10,283 222x1073 215.0x107¢ 495 x 10%2
Helium —18 3132 392x10°3 95.50x 10~¢ 2.28 x 10%!
Helium 177 3132 222x1073 269.0x 10~¢ 8.95 x 102°
Mercury 0 140 0.18x 1073 0.12x10"¢ 5.71 x 1023
Mercury 20 138 0.18x 1073 0.115x 10~¢ 6.37 x 10?3
Mercury 100 137 0.18x 1073 0.093x107¢ 9.60 x 10%%
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reference temperature, the product 73 is proportional
to o.

Along a straight line (Fig. 1) n=C,, noting that (7)
holds for every point of the & plane, the set

n=y U3 g2 g2
{"I =

gives:
5= Cli2.ylie. g3
1fpd = Cy 12 4= 16 5=t g~ 153
g6 = Cyl -y 13 . ¢l3 ®
7/8 = ClH2 .y~ 16 . p=173,

d and ¢/6% grow with ¢ along straight lines parallel to

Table 2. 1/8, 1/y8, /6%, n/3 in terms of y along lines ¢
=Cy:x=10'%;y =6 x 10*

" 1/8 1/v6 /82 )
e=C,=1
10® 1077 1.66x 10712 107'* 10
10° 10~¢ 166 x 10"t 10-12 1
10* 10~ 166 x 1071°  j0-1° 1071
102 1074 166x10°° 10°8 1072
1 102 166x10°8%  107° 1073
1072 1072 166x10°7 104 107*
10-¢ 10-¢ 1.66x107% 1072 103
1078 1 1.66x 1075 1 107°
10-8 10 1.66 x 1074 10? 1077
£=C, =10°
108 10-8 1.66x 10712 [0-13 1
10° 1077 1.66x 10712 10~ 10!
104 10-8 166 x10°t1  10°° 10°2
10? 1073 1.66x1071° 1077 1073
1 10-4 1.66 x 107° 10-3 1074
102 10-3 1.66x10°¢ 1073 1079
1074 102 166x10°7 1071 10~
108 10! 1.66x10°¢ 10 1077
108 1 166x 1075 103 1078
£=C,=10°
108 10-9 166x10°1% 10712 1071
106 10-8 1.66x 1071 10-1° 1072
10* 1077 1.66 x 1071 10~8 1073
10? 10-6 1.66x10°11 1076 10°*
1 103 166 x 10710 104 1073
10-2 1074 166x107° 1072 10-°
10°¢ 103 1.66x1078 1 1077
10~¢ 1072 1.66 x 1077 10? 1078
1078 1071 1.66x1076 104 10°°
e=(C,=10°
108 10°1%  j66x10715 101! 1072
10° 102 1.66x1071¢  107° 1073
10* 10~8 166x10713 1077 107#
10? 1077 166x107'2 1073 1073
1 10-¢ 1.66x107'1 1073 10°°
102 10-3 166 x1071° 107! 1077
1074 104 1.66x107° 10 108
10-¢ 103 166x10°8 103 107°
10-8 102 10° 10-1°

1.66 x 1077
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the ¢ axis; n/5, on the contrary, decreases.
Along any straight line &=, it is:

d = (‘é““"z} o A”,: N
16 = C5 00y iy oy

8/(52 — C-17.3.7" i 3,;;
/o = (52—-1'3 cy eyl
d and n/d increase, /6% decreases, for a growing n along
straight lines parallel to the n axis. Table 2 is derived
from calculation of the four relationships (9) for a wide
range of n, four values of C, y = 10'8 v =6 x 10* ; these
two last numbers approximately fit physical properties
of a lubricating oil at about ~ 15°C (Table 1). Results
show that Fig. 1 can be divided into three horizontal
strip fields: natural convection largely prevails in the
lower strip, viscous dissipation in the upper one. Inside
the intermediate strip, 1072 < 5 < 10?, values of /67
can be found of the same order as n/é: this order is
10741073, whileitis 1077 < 1/ < 1072 Moving the
representative point from left to right within every
strip, natural convection always tends to become more
important ; the contrary occurs for viscous dissipation.
Along the descending straight lines of Fig. 1 we
have:

= (5
fpo=Ci' -y

" \ 10
56% = C57% ¢ (1

Mo =Cyry B

The last formula in (10) is nothing but (7) divided by
0. 1/y0 1s not a function of ¢ ; so, when & and 7 are fixed,
the mulitiplier of the diffusive term computed from
them is compatible with the infinitely numerous
couples £/8% and n/8. Figure 2 is a logarithmic graph of
relationships (10) in the particular case of a lubricating
oil. Right and left columns of stars quote 1/6 and 1/
respectively. When § is fixed, the four multipliers are
immediately read in Fig. 2 for any ¢ and can be
compared.

Results in Table 2 are related to a specified fluid ;
nevertheless they induce the doubt that it is impossible
to have contemporaneously a strong viscous dissi-
pation and a lively natural convection, since when &/82
is large /6 is small ; when the two ratios are of the same
order, the latter is comparatively small. In order to
clarify this point further, let us find the locus of the
plane &y where

£/8% = n/o

(11)
or

= &/0. (1 1}
(11') represents a family of straight lines, each labelled
by a value of 6. They are parallel in Fig. 1. The
following equation of the locus is obtained from (7)
and (11'):

(12)
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FIG. 2. Plots of ¢/6% and 7/6 in terms of ¢ along lines (7) for y = 10'® and several values of 8. Stars quote
1/8.1/yé for a lubricating oilat ~ ~ 15°Cis marked by the column of asterisks. The locus (12) for the same y is

also

along (12) it is:

5= yli9. 59
1/})5 = X—1/9 "}7—1 .8—5/9
63 =njo = 7P &7 1",

Loci for y = 108,y = 10%!, y = 5.4 x 10%® (water
at 40°C for example) are drawn in Fig. 1 as straight
lines with a positive slope. Above every locus n/6 >
&/6%; below it the contrary holds. It must also be
observed that every point on any straight line (11')
meets the condition (11), but only the intersection
point between (7) and (11') for the same § (e.g. the point
B in Fig. 1) meets (11) for the given .

n grows with & more slowly than § along (12), so /6,
as is shown by the third relationship (13), decreases for
a growing ¢; the largest values are then found for the
smaller ¢, but they are at any rate small because of the
magnitude of y for existing fluids. Table 3 quotes #/6
for =1 and various loci (12) whose y values, although
not strictly computed by the physical properties of well
identified fluids, are within the range of Table 1. It is
then confirmed that equal and relatively large values of
¢/6% and 1/ cannot coexist for any physical system;

(13

Table 3. 5/ for ¢ = 1 and several ¥’s on the

loci (12)

x 8 &/6* =1/é
1018 102 10-*
10%! 2.15 x 102 2.15x10°5
1024 4.64 x 10? 4,64 x10°¢
102¢ 1.66 x 103 3.59x1077

traced.

their equality implies smallness, except for 0 < ¢ < 1,
which is clearly not very interesting.

Asis apparent, all the formulae (7)-(13) depend on
in a very heavy way since it is generally very large.
When it is changed, say from x, to g, the curves (7) in
Fig. 1 are shifted in the 5 direction by a quantity

¥ 1/3
logn —logny = An = log<71> .

If x> x1, Ay <0 and the curves (7) are shifted
downwards by an increasing x. The curves (12) are
moved in the same way by an amount

1/9
An = log (Zi) .
X

The change in y directly acts upon descending
straight lines /8 in Fig. 2, whose ordinates are lowered
when y is raised. This is stated by the last relationship
(10), the only one in this group which explicitly
depends on x. An increase of this number has then the
direct effect of reducing the incidence of the viscous
dissipation on solutions to (1); in this way y can supply
an immediate indication: the larger it is, the weaker
this influence is.

Equation (6) shows that x depends on several
physical properties of the fluid, on g and AT. So
stronger gravitational fields and weaker thermal fields
yield a reinforcement of viscous dissipation effects.

A change in y might imply a change in y (see (6')); an
indirect effect on the diffusion term would result in this
case. But the variation trend of 1/y8 cannot be known if
the working fluid is not exactly specified. Equation ™)
says that any two of the three numbers 6, ¢, 5 can
assume any value whatsoever and these are always
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consistent with any fluid; according to the viewpoint
of this work, as the couple 3, ¢ is chosen, we can say that
the effects of 1/6 and £/6? on solutions to (1) are not
conditioned by the nature of the fluid. When ¢ < §,
natural convection should not exert as great an
influence as viscous force, but both these effects are
weakened by an increasing d, as is shown in Fig. 2. The
greater § is, the greater ¢ must be for natural con-
vection to affect solutions.

Equation (7) is introduced in (3) and (4) to eliminate
their dependence on n and use is made of (6); the
following expressions are derived:

Lz(g'ﬂ'AT)—l‘B'VZ’B'S”?’ “4)
Vo= (g B -AT)!P 3.5 713, (15)

L is a function only of ¢ and grows with it for a given
fluid. Thus L is the same for any couple 8, # which,
together with ¢ and y, satisfies (7). Actually (14) is
nothing but the expression of L extracted from Gr, but
the way in which it is obtained here is deemed more
significant. ¥ decreases for an increasing ¢, but also
depends on 4. So one line V=V (d,¢), 6=C, is
associated with each =7 (3, ¢) of Fig. 1 for the same 4.

With regard to the dependence of (14 and (15 on the
physical properties, L and ¥ do not depend on C,.
Besides, 8 does not change very much from one fluid to
another and AT is in some way a fixed quantity.
Therefore v is the only property which substantially
accounts for the peculiarity of the fluid in (14), (15).
These functions are plotted on a logarithmic chart

}
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(Fig. 3) for two liquids with very different kinematic
viscosities: water at 40°C and a lubricating oil at
~ —15°C, The combined observation of figures like 2
and 3 enables one to link dimensions and operating
conditions of any physical system te the incidence of
the various effects (viscous force, buoyancy, thermal
diffusion, viscous dissipation). As an example, some
natural systems which are often characterized by a
large L and a small V, should more likely be the seat of
a lively natural convection rather than strong dissi-
pative phenomena; a well known result.

Arguments in this work construct a context which
outlines how the interaction among the four dimen-
sionless groups develops ; the context can contribute to
the acquisition of a first, rough orientation in assessing
the influence of the various terms on solutions to (1).
So, for example, if y is comparatively large, viscous
dissipation can hardly have an influence. It affects a
flow of air at 20°C more intensely than a flow of water
at the same temperature, all other constraints remain-
ing unchanged.

Questions such as ‘when can viscous dissipation not
be neglected for water? When can thermal diffusion be
neglected? etc., are more easily answered by the use of
the formulae in this paper. Let us consider the
following example. If water at 20°C with AT =1°C (y
= 2.32 x 10%%) is considered together with § = 10°
and ¢= 10% we have from (7) =35 x 1072
Maultipliersare: 1/6 = 1075, 1/y6 = 1.43 x 107%;¢/8%
= 1077;n/6 = 3.5 x 1077, If reference is made to a

lupricating oil

N e ~i

10 i e [N \\\“f
0B - - ~

e 2 =108 R S-l2 T

3 =10 el Te~ .

4 =10 — .

5 = 10° Vit~ ;

ity & =10° herTe g :

7 =10 Tl i

& 8 =10° - T

0 & 10 N 10° 10 10 10

F1G. 3. Linm and ¥ in ms™* as functions of ¢ for two fluids and several values of .
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rotating disk with a finite radius, the flow is probably
still laminar for 6 = 10° (this is strictly the case for
isothermal conditions). Nothing entitles one to believe
that in this case viscous dissipation is a priori negligible
with respect to other effects, although water is in
question.

Another opportunity for exploiting the material of
this paper is in the study of a physical system whose
configuration is known, but, for reasons of generality,
it would be preferable not to prefix its dimensions,
operating conditions and working fluid. In this case it
is possible to select the most convenient, strictly
compatible multipliers for equations (1) before
integrating.

A method is offered of localizing the areas of Fig. 1
where the largest or the smallest values of a given
coefficient must be sought and what the others are in
the quatern. In regards to thermal diffusion, for
example, 1/y6 decreases for growing eand n as is shown
by (8), (9) and by Table 2. The influence of this term is
reinforced in the lower left region of Fig. 1 and
weakened in the upper right one. If it is noted that n/6
increases with , the points where thermal diffusion may
be expected to become negligible against viscous
dissipation are within the upper strip of Fig. 1. Some
calculations are collected in Table 4 as examples to
support this statement and to display the consistent
values of multipliers for several common fluids. The
calculations of Table 4 and Table 2 also show that /52
is lowered faster than 1/6 by an increase in #. Effects
linked to these coefficients are probably comparable
for values at the bottom of Fig. 1. In the top region
viscous forces prevail over natural convection, but

Table 4. The four multipliers for four n’s
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they become in turn less and less important with
respect to forces of inertia.

If now, restrictions on the amplitude of AT are
released, the same ratios of dimensionless groups,
although multiplied by functions of dimensionless
temperature (and possibly pressure), appear in the
transport equations with the full variability of all
physical properties. As far as compatibility of the four
numbers is concerned, it must be observed that the
presence, as multipliers, of the dimensionless functions
mentioned above (these functions change from one
fluid to another, depend on the amplitude of AT and
on its position in the scale of temperature) prevents
any general treatment. The characteristic nature of
the fluid plays a role in every case. Arguments in this
work still hold with reference to a specified fluid.

3. CONCLUSIONS

A proposal is put forward in this paper to state a
compatibility relationship among Re, Gr, Ec without
reference to any physical system. This implies the
definition of a new dimensionless group, y, which
compactly accounts for the peculiarity of the fluid and
AT; the latter quantity is seen to be in some way
known or evaluable. As a consequence, the multipliers
1/Re, Gr/Re*, Ec/Re for the heat and momentum
transport equations can be immediately derived. It is
shown that more than one value of the multiplier
1/Pr - Re of the thermal diffusion term can be con-
sistent with a specified tern of the above mentioned
multipliers.

A graphic image as to how Re, Gr, Ec are linked to
each other and geometry and operating conditions of a

, two &’s and four fluids at 20°C (from (9))

1/3 1/y8 €/6° n/é
Fluid s e e e — - — — -
x v =1 &= 10" £=1 £=10° e=1 e=10° e=1 &= 10°
n =108
Lub. oil
5.60% 102 1.01x 10* 348x107%  348x 107! 345% 10712 345x107!'8 121x107%%  121x10712 348 348x 1073
Water
23x10%% 7 195x10 ° 195x107'2 267x1071°  267x107"3 35x 10718 35x10°18 1.87x1071  187x107*
Air
14%10*" 0.7 299x10° % 299x 107" 427x10° % 427x 107! 894x10°'  894x1071? 299 299x 1073
Mercury
6.37x 1025 230x 2 50x10 ° 50x 10712 217x 1077 217x1071° 25x107"7 25x 10714 50x107* 50x10°%
n=10*
Lub. oil 348x10°°  348x107° 345x1071°  345x 10713 1.21x 10710 121x1078 348x 1077  348x10~*
Water 195x 10 7 1.95x1071° 267x107%  267x107" 35% 107 35x107 1 187x107%  187x107°
Air 299x10°%  299x107° 427x107° 427x107° 894x107'*  894x107°? 299x107%  299x10-3
Mercury 50% 1077 50x1071° 217x107% 217x 1078 25x107 13 25x 1071 50x1073 50x10°°
n=1
Lub. oil 348x10°*  348x 1077 345x 1078 345x 1071 1211077 121x107¢ 348x 1074 348x 1077
Water 195x107%  1.95x 1078 267x107¢  267x107° 35x 10710 35%x1077 187x107%  187x 107
Air 299x107%  299x1077 427x107*  427x1077 894x107°  894x107° 299%107%  299x 1077
Mercury 50x 103 50x107% 217x1073 2.17x107¢ 25x10°° 25x107° 50x10°% 50x 1072
n=10"*%
Lub. oil 348x107%  348x107° 345x107¢ 345x10°° 1.21 x 1073 1.21 348x107%  348x 1077
Water 195x107%  195x10°¢ 267x10°%  2.67x1077 35x 107 35%x 1073 187x1077  1.87x1071°
Air 299x 1072 2991073 427x 1077 427x107° 894x107*  894x 107! 299x107¢  299x107°
Mercury 50x10°° 50%10°° 217x 1071 217x107*% 25%x107° 25%x 1072 50x10"7  50x107'°
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physical system is buiit up. This clarifies the con-
nection between dimensions and operating conditions
of the system and the main effects which develop in it.

A result which comes out of the analysis in this work
is that natural convection and viscous dissipation
cannot simultaneously have an equal and strong
influence upon solutions to transport equations in the
considered range of Gr.

Finally some examples are given to explain how the
material in this work can be conveniently used.

With regard to the second problem, outlined in the
Introduction, this paper does not give an exhaustive
reply. However, the trend for each muitiplier is in-
dicated and it is possible at least to know where each
of them tends to become unimportant.
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MANLIO BERTELA

APPENDIX

Gebhart and Mollendorf write in [1] and [2] that viscous
dissipation may be important for very large systems. This
statement is consistent with the background supplied by this
paper. If the fluid is fixed and ¢ is kept constant, it stems from
(6) and (7) that AT can be varied only if L, is varied too. This
means to consider a sequence of systems, each of them
characterized by a couple L, AT and by the same fluid. In such
a sequence, where AT is smaller, L is larger, y is smaller and,
according to (7), viscous dissipation becomes more and more
important.

The same result can be reached with a different approach. If
the compatibility relationship is derived from (3), we have:

RS y,a:': {ALs
where

gL
="

-

L1 {A.2)
71 is just the dissipation parameter considered by Gebhart. [n
order to assess the influence of L on 5, the change of the
former must be isolated. With reference to (A.1) and (A.2), let
us keep & and ¢ constant and prefix the fluid. Under these
hypotheses an increase of L implies a decrease in AT and the
reasoning proceeds as above. y grows with L, but AT is
variable too.

It is deduced in this paper that viscous dissipation is more
important for systems with small dimensions. So it may seem
that this paper contradicts Gebhart and Mollendorf [1] and
[2]. This is not the case. While the considerations in (A.1) and
(A.2) hold for a variable AT and a constant ¢. Figure 3 in this
paper displays the course of the function L(¢) for a strictly
constant AT. Clearly this is a different point of view.

COMPATIBILITE ENTRE LES GROUPES ADIMENSIONNELS DES
EQUATIONS AUX DERIVEES PARTIELLES DE NAVIER-STOKES ET
DE L’ENERGIE

Résumé— On propose une méthode pour obtenir une relation de compatibilité entre le nombre de Prandtl, le

nombre de Reynolds, celui de Grashof et celui de Eckert qui sont présents dans les équations différentielles de

transfert de chaleur et de quantité de mouvement. On a ainsi la possibilité de calculer des multiplicateurs

cohérents pour tous les termes des susdites équations sans se reférer a aucun systéme physique. L’analyse a

détecté que la convection naturelle et la dissipation visqueuse ne peuvent pas simultanément influencer les
solutions des équations de transfert avec une égale et haute intensité

VEREINBARKEIT UND WECHSELWIRKUNG ZWISCHEN DEN KENNGROBEN
DER NAVIER-STOKES- UND DER ENERGIE-DIFFERENTIALGLEICHUNG

Zusammenfassung—Es wird eine Methode mitgeteilt, die eine Beziehung liber die Vereinbarkeit von Werten

der Prandtl-, Reynolds-, Grashof- und Eckert-Zahlen in den Differentialgleichungen fiir den Wirme- und

Impuistransport liefert. Damit kann man konsistente Multiplikatoren fur jeden Term der genannten

Gleichungen ohne Bezug auf ein bestimmtes System berechnen. Es zeigt sich, daB freie Konvektion und

viskose Dissipation nicht gleichzeitig die Losung einer Transportgleichung mit gleicher und starker
Intensitit beeinflussen konnen.

COBMECTUMOCTb U B3AMMOCBA3b MEXAY BE3PABMEPHBIMH KOMIUIEKCAMHU
B JUGOEPEHLIMATIBHBIX YPABHEHUAX HABBE-CTOKCA W DHEPTUH

Annotauns — [Tpennoxen METOA NOJyHeHHs YCIOBHA COBMECTAMOCTH kecen [panaris. PefiHoseaca,

I'pacroda u Dxkepra, BXOAAWMX B AuddepeHuManpHble YPABHCHHS NEPEHOCA TCNA ¥ HMAYIbCA.

OH NO3BOJSET PACCUHTHIBATH COIJIACYIOIME MHOXKHTC/IH [/i% BCEX 4ICHOB HA3BAHHBIX ypaBHenuil 6e3

aneJUIANNM K KOHKPETHOH (U3MYeCKO# cHCTeMe. AHAHM3 MOKa3bIBAET, YTO €CTECTBEHHAS KOHBEKUMS

U Bs3Kas [ANCCHIIANIMA HE MOrYT OJHOBPEMEHHO OKa3blBaTh OJHHAKOBO OOJIBLIOE BIUSHUC HA PEUICHAC
ypaBHEHHH nepeHoca.



